Simple Antiflexible Rings

M. Hema Prasad, Dr. D. Bharathi, Dr. M. Munirathnam

Abstract

Let R be an antiflexible ring of characteristic $\neq 2,3$. In this paper, first we prove that associator is in the center. Using this, we prove that a simple not associative and not commutative antiflexible ring R is right alternative

Index Terms-Associator, antiflexible ring, characteristic, commutator, Lie ring, right alternative

1. INTRODUCTION

Antiflexible albebras were introduced by Kosier [1] , and a subclass of antiflexible rings was studied earlier by Kleinfeld [2]. Thedy [3] proved that simple rings satisfying $(a,(b, c, d))=0$ are either associative or commutative. In [4], K. Survana established the result $(R,(R, R, R))=0$ in $(-1,1)$ ring of characteristic $\neq 2,3$. In [5], K. Subhashini proved that a simple not associative and not commutative (1,0) ring R of characteristic $\neq 2,3$ is alternative by using $(R,(R, R, R))=0$. In this paper, we prove that a simple not associative and not commutative antiflexible ring R is right alternative.

2. PRELIMINARIES

The associator (x, y, z) and commutator (x, y) are defined by $(x, y, z)=(x y) z-x(y z)$ and $(x, y)=x y-y x$ for all x, y, z in R respectively. The nucleus N of a ring is defined as $N=\{n \in R /(n, R, R)=(R, n, R)=(R, R, n)=0\}$. The center C of R is defined as $C=\{c \in N /(c, R)=0\}$. A ring is called simple if $R^{2} \neq 0$ and the only nonzero ideal of R is itself. A right alternative ring R is a ring in which $y(x x)=(y x) x$, for all x, y in R.
The ring R is said to be Antiflexible if $A(x, y, z)=(x, y, z)-(z, y, x)=0$ is an identity in R.
Throughout this paper we assume that R is antiflexible.
A ring R is of characteristic $\neq n$ if $n x=0$ implies $x=0$ for all $x \in R$ and n is a natural number when $n=2,3$ and that the third power associativity condition $(x, x, x)=0$
is an identity in R.
With aid of (1), we obtain the identity as a linearization of (2)

$$
\begin{equation*}
B(x, y, z)=(x, y, z)+(y, z, x)+(z, x, y)=0 \tag{3}
\end{equation*}
$$

We shall also require the Teichmuller identity (which holds in any ring)
$C(w, x, y, z)=(w x, y, z)-(w, x y, z)+(w, x, y z)-w(x, y, z)-(w, x, y) z=0$

In any ring, $(x y, z)=x(y, z)+(x, z) y+(x, y, z)+(z, x, y)-(x, z, y)$ holds.
From which we subtract $A(x, z, y)+B(x, y, z)=0$
to obtain $D(x, y, z)=(x y, z)-x(y, z)-(x, z) y+2(x, z, y)=0$
We let xoy $=x y+y x$;
then it can be verified that in any ring
$(x$ o y) o z - x o (y o z $)=(x, y, z)+(x, z, y)+(y, x, z)-(y, z, x)-(z, x, y)-(z, y, x)+(y,(x, y))$
so that from (1) we get (x o y) o $\mathrm{z}-\mathrm{x}$ o (y o z) $=(\mathrm{y},(\mathrm{x}, \mathrm{z})$)
If we retain the additive group of R but replace the product $x y$ of R by the product xoy, then we obtain a commutative ring R^{+}, and it follows from (2) and (6) that R^{+}is a Jordan Ring. Equally, we could get an anticommutative ring R^{-}by replacing the product $x y$ by the commutator product (x, y) and from
$0=\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{D}(\mathrm{y}, \mathrm{x}, \mathrm{z})$ and $0=\mathrm{A}(\mathrm{x}, \mathrm{z}, \mathrm{y})$.
It would follow that $((x, y), z)+((y, z), x)+((z, x), y)=0$
so that R^{-}would be a Lie ring.
Expanding $0=C(w, x, y, z)-C(z, y, x, w)$ and using
$0=A(z, y, x w)=A(z, y x, w)=A(z y, x, w)=z A(y, x, w)=A(z, y, x) w$, we get
$0=E(w, x, y, z)=((w, x), y, z)-(w,(x, y), z)+(w, x,(y, z))-(w,(x, y, z))-((w, x, y), z)$
Then we expand
$0=E(w, x, y, z)+E(x, y, z, w)+E(y, z, w, x)+E(z, w, x, y)-B((w, x), y, z)-B((x, y), z, w)-B((y, z), w, x)-B((z, w), x, y)$
To get
$0=F(w, x, y, z)=(w,(x, y), z)+(x,(y, z), w)+(y,(z, w), x)+(z,(w, x), y)$

Now we are able to derive the important identity ($\mathrm{w},(\mathrm{x}, \mathrm{y}), \mathrm{z})=0$
-(10)
Expanding
$0=E(x, x, y, x)+E(y, x, x, x)-B(x, x,(y, x))+(B(x, x, y), x)$,
We get, $0=(x,(x, y, x))$,
Hence from $\quad 0=(x, B(x, y, x))$ and $0=(x, A(x, x, y))$, we have

$$
\begin{equation*}
0=(x,(x, y, x))=(x,(x, x, y))=(x,(y, x, x)) \tag{11}
\end{equation*}
$$

From (3) and (4), G $(w, x, y, z)=(w,(x, y, z))-(x,(y, z, w))+(y,(z, w, x))-(y,(w, x, y))=0$
$G(x, y, x, y)=(x,(y, x, y))-(y,(x, y, x))+(x,(y, x, y)-(y,(x, y, x))=0$
$\Rightarrow \quad 2(x,(y, x, y))-2(y,(x, y, x)=0$
$\Rightarrow \quad(x,(y, x, y))-(y,(x, y))=0$
$\Rightarrow \quad(x,(y, x, y))-(y,(x, y, x))=0$
From (1), $A(x, y, y)=0 \& A(y, x, x)=0 \&$
Thus $(x,(y, x, y))-(y,(y, x, x))=0$
Combining this with $G(x, y, y, x)=0$
Gives $2(x,(x, y, y))=0$
And therefore
$(x,(x, y, y))=0$
Linearize (13)
$J(x, y, z)=(x,(x, y, z))+(x,(x, z, y))=0$
Again linearize (13)
$\Rightarrow K(x, y, z)=(x,(z, y, y))+(z,(x, y, y))=0$
Combination of
$K(y, x+y, z)-(y, B(y, x, z))-K(y, x, z)-(y, A(x, y, z))-K(z, y, y)+(y, A(z, y, x))-J(y, z, x)-(z, A(y, x, y))+K(x, y, z)=0$ gives $(y,(z, x+y, x+y))+(z,(y, x+y, x+y))-(y,(x, y, z)+(y, z, x)+(z, x, y))-(y,(z, x, x))-(z,(y, x, x))-(y,(x, y, z)-(z, y, x))-$ $(z,(y, y, y))-(y,(z, y, y))+(y,(z, y, x)-(x, y, z))-(y,(y, z, x))-(y,(y, x, z))-(z,(y, x, y)-(y, x, y))+(x,(z, y, y))+(z,(x, y, y))=0$. $\Rightarrow(y,(z, x, x))+(y,(z, x, y))+(y,(z, y, x))+(y,(z, y, y))+(z,(y, x, x))+(z,(y, x, y))+(z,(y, y, x))+(z,(y, y, y))-(y,(x, y, z))-$ $(y,(y, z, x))-(y,(z, x, y))-(y,(z, x, x)-(z,(y, x, x))-(y,(x, y, z))+(y,(z, y, x))-(z,(y, y, y))-(y,(z, y, y))+(y,(z, y, x)$

$$
-\quad(y,(x, y, z))-(y,(y, z, x))-(y,(y, x, z))+(x,(z, y, y))+(z,(x, y, y))=0
$$

$2(z,(y, y, x))+(z,(y, x, y))+(x,(z, y, y))-2(y,(y, z, x))-(y,(z, x, y))=0$
$(z,(y, x, y))+(z,(y, y, x))-2(y,(y, z, x))-(y,(z, x, y))=0$ $-(z,(x, y, y))-2(y,(y, z, x))-(y,(z, x, y))=0$
\Rightarrow Therefore $\quad \mathrm{L}(\mathrm{x}, \mathrm{y}, \mathrm{z})=-(\mathrm{z},(\mathrm{x}, \mathrm{y}, \mathrm{y}))-(\mathrm{y},(\mathrm{y}, \mathrm{z}, \mathrm{x}))+(\mathrm{y},(\mathrm{x}, \mathrm{y}, \mathrm{z}))=0$
Using (1) and (12) can be written as $(x,(y, y, x))=0$
Linearization of this equation gives

$$
(x,(z, y, x))+(x,(y, z, x))=0
$$

$$
\begin{equation*}
(x,(z, y, x))=-(x,(y, z, x)) \tag{18}
\end{equation*}
$$

Linearize equation (13)

$$
(x,(x, y, z))+(x,(x, z, y))=0
$$

$(x,(x, y, z))=-(x,(x, z, y))$

$$
\begin{align*}
(x,(x, y, z)) & =-(x,(y, x, z)) \quad(\text { by }(18)) \tag{19}\\
& =-(x,(z, x, y)) \quad(\text { by }(1)) \\
& =(x,(z, y, x)) \quad(\text { by }(18)) \tag{20}
\end{align*}
$$

Commute equation (3) with x

$$
\begin{align*}
& (x,(x, y, z))+(x,(y, z, x))+(x,(z, x, y))=0 \\
& \quad \Rightarrow(x,(z, x, y))=0 \quad(\text { By (20) \& (18)) } \tag{21}
\end{align*}
$$

From (16) and (19), we have

$$
\begin{align*}
& (\mathrm{z},(\mathrm{x}, \mathrm{y}, \mathrm{y}))=0 \\
& \quad(\mathrm{R},(\mathrm{x}, \mathrm{y}, \mathrm{y}))=0 \tag{22}
\end{align*}
$$

Linearize (22), we have
$(w,(x, y, z))+(w,(x, z, y))=0$

$$
\begin{align*}
\Rightarrow(\mathrm{w},(\mathrm{x}, \mathrm{y}, \mathrm{z})) & = & -(\mathrm{w},(\mathrm{x}, \mathrm{z}, \mathrm{y})) & \tag{23}\\
(\mathrm{w},(\mathrm{x}, \mathrm{y}, \mathrm{z})) & =(\mathrm{w},(\mathrm{z}, \mathrm{y}, \mathrm{x})) & & (\text { by }(1)) \\
& =-(\mathrm{w},(\mathrm{z}, \mathrm{x}, \mathrm{y})) & & (\text { by }(23)) \\
& =-(\mathrm{w},(\mathrm{y}, \mathrm{x}, \mathrm{z})) & & (\text { by }(1)) \\
& =(\mathrm{w},(\mathrm{y}, \mathrm{z}, \mathrm{x})) & & (\text { by }(23))
\end{align*}
$$

Commute equ(3) with w

```
\((w,(x, y, z))+(w,(y, z, x))+(w,(z, x, y))=0\)
    \(\Rightarrow(w,(x, y, z))=0\)
```


3. Main Section:

Let us define $T=\{t \in R /(t, R)=0=(t, R, R)=0\}$
Lemma 3.1: T is an ideal of R.
Proof: To prove T is an ideal.
Substitute $x=t$ in (24) that gives
$((t, y, z), w)=0$
From this, we have
(ty.z,w) - (t.yz,w) $=0$
And this becomes
$(t y . z, w)=0$ from the definition of T
Thus ty $\epsilon \mathrm{T}$ and so T is a right ideal.
However yt ϵ T.
Thus T is a two sided ideal of R.

Theorem3.2 : A simple not associative and not commutative antiflexible ring R of characteristic $\neq 2,3$ is right alternative.
Proof: First we prove the identity $(r,(z, y, y) w)=0$.
Commute Teichmuller identity $C(w, x, y, z)=0$ with r and applying equation (24), we get
$-(r, w(x, y, z))-(r,(w, x, y) z)=0$
Gives $(r, w(x, y, z))=-(r,(w, x, y) z)$
If we put $y=z=x$ in this equation, then from (1) it reduces
$(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{x}, \mathrm{x}))=-(\mathrm{r},(\mathrm{w}, \mathrm{x}, \mathrm{x}) \mathrm{x})$

$$
=0
$$

$\Rightarrow(\mathrm{r},(\mathrm{w}, \mathrm{x}, \mathrm{x}) \mathrm{x})=0$
From (24) \& (25) all (w, x, x) are in T
Since R is simple and T is an ideal of R,
Then either $\mathrm{T}=\mathrm{R}$ or $\mathrm{T}=0$.
If $T=R$ then R is commutative.
Since R is not commutative we must have $T=0$.
Then ($\mathrm{w}, \mathrm{x}, \mathrm{x}$) $=0$
This implies R is Right-alternative.

References:

1. Kosier, Frank, On a class of nonflexible algebras, Trans. Am. Math. Soc. 102 (1962) 298-318.
2. Klenfeld. E, Kosier. F, Osborn, J.M., and Rodabaugh.D, The structure of associator dependent rings, Trans. Am. Math.Soc. 110 (1964), 473-483.
3. A. Thedy, On Rings satisfying $((a, b, c), d)=0$, Proc.Amer.Math. Soc. 29 (1971), $213-218$.
4. K. Survana and K. Subhashini, A Result on prime (-1,1) rings Actaciencia Indica, VolXXVI M, no. 2 (2000), 85-86.
5. Subhashini .K, Simple (1,0) Rings, International Mathematical Forum, Vol 7,2012, no.48, 2407-2410.

AUTHORS INFORMATION:

- M.HEMA PRASAD, Assistant Professor of Mathematics, Dept. of Science of Humanities, SITAMS, CHITTOOR, ANDHRA PRADESH,

INDIA, PH-09440539339,E-mail:mhmprsd@gmail.com.

- Dr. D. BHARATHI, Associate Professor, Dept. of Mathematics, S.V. University, TIRUPATI, ANDHRA PRADESH, INDIA, PH-09440343888, E-mail: bharathikavali@yahoo.co.in.
- Dr. M. MUNIRATHNAM, Ad-hoc Lecturer, RGUKT, R. K. Valley, KADAPA, ANDHRA PRADESH, INDIA, PH- 9849373260,

E-mail:munirathnam1986@gmail.com.

